(1) Sets in $\mathbb{C}:$

- The symbol $C$ will allow for equality of sets. (Notation).
- $D(a, R)=\{z|0 \leq|z-a|<R\}$ is the open disc of radius
$R$ centered at point $a$. $D(a, R) \backslash\{a\}$ is a punctured open disc. A neightoubanshood of $a$ is an open disc of nonzero radius centered at a. Similarly for a punctured neighbacrhood.

Important types of sets.
$S \subset \mathbb{C}$ is open $\Longleftrightarrow(S=\varnothing) \vee(\forall a \in S)(\exists \varepsilon>0)(D(a, \varepsilon) \subset S)$
The compliment of a set is comp $(S)=\mathbb{C} \backslash S$
$S$ is closed $\Longleftrightarrow$ comp $(S)$ is open
$z \in \partial S \quad \Longleftrightarrow(\forall R>0)\left(\exists S, S^{\prime} \in D(z, R)\right.$ such that the boundary of $\left.S \quad s \in S \& s^{\prime} \in \operatorname{comp}(S)\right)$
Its important to remember that $\phi \& \mathbb{C}$ are the only sets BOTH open \& dosed, however there are many cats that ore neither. A nonempty $S \subset \mathbb{C}$ is connected if any two points from $S$ can be connected by a contimueus path. $S$ is not connected $\Leftrightarrow S$ is discomechad. A domain is a nonempty, connected, open set. Only domain of a fundian $S \subset \mathbb{C}$ is bounded $\Leftrightarrow(\exists R>O X S \subset D(0, R))$ $S$ is compact $\Longleftrightarrow S$ is closed, bounded.

Point $a \in \mathbb{C}$ is a point of accumulation for $S C \mathbb{C}$ $\Longleftrightarrow(\forall \varepsilon>0)(\exists s \in S)(s \in D(a, \varepsilon) \backslash\{a\})$
(2) Sequences \& Limits:

A complex sequence is an ordered subset of points $\left\{u_{j}\right\} \subset \mathbb{C}$. The sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ can be said to:

- Converge to $u \Longleftrightarrow \lim _{n \rightarrow \infty} u_{n}=u \Longleftrightarrow(\forall \varepsilon>0)(\exists N \in \mathbb{N})(\forall m>N)\left(u_{m} \in D(u, \varepsilon)\right)$
- Diverge $\Longleftrightarrow(\forall u \in \mathbb{C})\left(\lim _{n \rightarrow \infty} u_{n} \neq u\right) \Longleftrightarrow$ NOT cmvergent

Diverge to $\infty \Longleftrightarrow(\forall K>0)(\exists N>0)(\forall m>N)\left(u_{m} \in \operatorname{comp}[D(0, K)]\right)$
Sequence $\left\{u_{n} \xi_{n} \in \mathbb{N}\right.$ is Cauchy $\Leftrightarrow(\forall \varepsilon>0)(\exists N>0)(\forall m, n>N)\left(\left|u_{m}-u_{n}\right|<\varepsilon\right)$

Limit Rules. $u_{n} \rightarrow U \& v_{n} \rightarrow V$ THEN
$\cdot u_{n}+v_{n} \longrightarrow u+v \quad . \forall \lambda \in \mathbb{C} \quad \lambda u_{n} \longrightarrow \lambda u$
$\cdot u_{n} v_{n} \longrightarrow u v \quad \cdot \frac{u_{n}}{v_{n}} \longrightarrow \frac{u}{v}$, when $v, v_{1}, v_{2}, \ldots \neq 0$.
Convergence Theorems.
$T: u_{n} \rightarrow \infty$ in $\mathbb{C} \Longleftrightarrow \frac{1}{u_{n}} \longrightarrow 0$
$T:\left\{u_{n} \xi_{n \in \mathbb{N}} \subset \mathbb{C}\right.$ converges $\Longleftrightarrow\left\{\operatorname{Re}\left(u_{n}\right)\right\} \notin\left\{\operatorname{Im}\left(u_{n}\right)\right\}$ converge The complex sequence converges if its two amponeats converge.
T: A sequence converges $\Longleftrightarrow$ The sequence :s Cauchy.
T: Every bounded sequence has a convergent subsequence. (Bolzan o-Weierstrass Theorem)
(3) Continuity \& Limits of Functions:

For $S \subset \mathbb{C}$ open. $f: S \longrightarrow \mathbb{C}$.

- $\lim _{z \rightarrow c} f(z)=L \Longleftrightarrow(\forall \varepsilon>0)(\exists \delta>0)(z \in D(c, \delta) \backslash\{c\} \Rightarrow f(z) \in D(L, \varepsilon))$
- $\lim _{z \rightarrow \infty} f(z)=L \Longleftrightarrow(\forall \varepsilon>0)(\exists K>0)(z \in \operatorname{comp}(0(0, K)) \cap S \Rightarrow f(z) \in D(L, \varepsilon))$.
- $f$ is continuous at $c \in \mathbb{C} \Longleftrightarrow \lim _{z \rightarrow c} f(z)=f(c)$
- $f$ is continuous in $S \Longleftrightarrow(\forall s \in S)(f$ is continuous at $s)$.
$T$ : $f$ continuous at $c \& f(c) \neq 0 \Longrightarrow(\exists \varepsilon>0)(\forall s \in D(c, \varepsilon))(f(s) \neq 0)$. If $f$ is continues \& nonzero at a point then three is a neishbowarhaod in around that paint in which $f$ is also nonzero.
Limit Recles. Assuming $\lim _{z \rightarrow c} f(z) \& \lim _{z \rightarrow c} g(z)$ exist. - $\lim _{z \rightarrow c}[f(z)+g(z)]=\lim _{z \rightarrow c} f(z)+\lim _{z \rightarrow c} g(z)$
- Same for product, quotered, \& composition.
(4) The Basics of Holomorphicity:
$S \subset \mathbb{C}$ open. $f: S \longrightarrow \mathbb{C}$ :s complex differentiable at $c \in S \Longleftrightarrow$ The limit exits $f^{\prime}(c)=\frac{f(z)-f(c)}{z-c}$ $f$ is complex differentiable in $S$ it has a derivative at every point. $f^{\prime}$ is the derivative.
T: $(f+g)^{\prime}=f^{\prime}+g^{\prime},(f g)^{\prime}=f^{\prime} g+f g^{\prime},(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$ Assuming all appropriate limits exist.

T: complex differentiable $\Rightarrow \mathbb{R}^{2}$ diff
T: Existence \& continuity of partial derivatives in $\mathbb{R}^{2}$ is sufficient for differentiability $\left(\mathbb{R}^{2} d \cdot f f\right)$ at that pint.

Holomorphic. function $f$ is holomorphic at $c \in \mathbb{C} \Longleftrightarrow(\exists \varepsilon>0)(f$ is complex differentiable in $D(c, \varepsilon))$.
f holomorphic in open set $S \Longleftrightarrow$ holomorphic ut all $s \in S$.
$f$ is entire $\Longleftrightarrow f$ is holomorphic on all of $\mathbb{C}$.
T: Let $c=a+i b \quad \& z=x+i y, f(z)=F(x, y)=u(x, y)+i v(x, y)$
Where $u \& v$ are real functions. Then we can say
$f$ is holomorphic $\Longleftrightarrow \cdot u \notin v$ ave $\mathbb{R}^{2}$ diff in a neighbour hood of at $c$
is $c$ dimorphic $\Longleftrightarrow(a, b)$.
.$J F$.
$-\frac{\partial F}{\partial x}=-i \frac{\partial F}{\partial y} \quad \begin{aligned} & \text { The partial derivatives } \\ & \text { must be related buchy-Riemann relations }\end{aligned}$
T: $\frac{\partial F}{\partial x}=-i \frac{\partial F}{\partial y} \Longleftrightarrow \frac{\partial u}{\partial x}=\frac{\partial u}{\partial y} \& \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$
T: f holomorphic in open $S \subset \mathbb{C} \Longrightarrow f^{\prime}$ continues on $S$.
T: f holomorphic in $\Omega$ a domain $\Rightarrow f^{\prime}=0$

* $|f|=c \in \mathbb{C}$ in $\Omega$ in $\Omega$

(5) Curves in $\mathbb{C}$ :
- A continuous curve is a function $\rho:[a, b] \rightarrow \mathbb{C}$ that is continuous $A$ domain $\Omega$ is starshaped if there is an $l \in \Omega$
. J is a simple curve $\Longleftrightarrow\left[f\left(t_{1}\right)=f\left(t_{2}\right) \Longleftrightarrow t_{1}=t_{2}\right]$
- I is a closed curve $\Longleftrightarrow \varphi(a)=\rho(b)$
- I simple closed curve $\Longleftrightarrow\left[\left(\forall t_{1}<t_{2}\right)\left(\rho\left(t_{1}\right)=\rho\left(t_{2}\right) \Longleftrightarrow t_{1}=u \xi t_{2}=b\right)\right]$
- $f(t)=\xi(t)+i \eta(t), t \in[a, b]$ is a regular arc if both $\xi \nexists \eta$ are differentiable on $[a, b]$ and $J^{\prime}(t)=\xi^{\prime}(t)+i \eta^{\prime}(t)$ is continuous \& nonzero on ( $a, b$ ).
T: A simple dosed curve $C$ divides the complex plain into two domains, I $\ddagger E$, where one is bounded \& the other not. $C$ is the boundary of both $I \notin E$.
T: A regular are has a finite length given by

$$
L=\int_{a}^{b}|\varphi(t)| d t=\int_{a}^{b} \sqrt{\xi^{\prime}(t)^{2}+\eta^{\prime}(t)^{2}} d t
$$

(6) Contour Integrals:

The centaur integral of a complex function $f$ over a regular arc $C$ is is given by $\int_{c} f(z) d z=\int_{a}^{b} f(\rho(t)) J^{\prime}(t)$ ot Where $J(t)$ is a parametrisation of $C m[a, b]$.
If holomorphic on $\Rightarrow g=f \circ J$ is a differentiable function of a regular arc $\rho \quad$ veal valued $t \& g^{\prime}(t)=f^{\prime}(\rho(t)) \rho^{\prime}(t)$
$T$ : $f$ hulomovplic in domain $\Omega \Rightarrow\left[f^{\prime}=0\right.$ in $\Omega \Longleftrightarrow f=c \in \mathbb{C}$ in $\left.\Omega\right]$
$T$ : Cantor integrals ave linear maps of fimetions in to $\mathbb{C}$, $u$. $\int_{c}(f+g)(z) d z=\int_{c} f(z) d z+\int_{c} g(z) d z$
$(\forall \alpha \in \mathbb{T})\left(\int_{c} \alpha f(z) d z=\alpha \int_{c} f(z) d z\right)$
Tif continuous on $[\alpha, \beta] \Rightarrow\left|\int_{\alpha}^{\beta} f(t) d t\right| \leq \int_{k}^{\beta}|f(t)| d t$

A contour $C$ is a finite number of regular arcs joined and to end. $\int_{c} f(z) d z=\int_{c_{1}} f(z) d z+\cdots+\int_{C_{n}} f(z) d z$
$T: f(z)=F^{\prime}(z)$ a center
$C$, starting at $z_{1}$, ending $z_{2} \Longrightarrow \int_{C} f(z) d z=F\left(z_{2}\right)-F\left(z_{1}\right)$ for same holomorphic $F$
$T:|f(z)| \leq M$ on contour $C \Rightarrow\left|\int_{C} f(z) d z\right| \leq M L$
of length $L$
$I: C$ a center, $\Omega$ a domain disjoint from $C$.
$\phi$ is absolutely integrable on $C$
$\Rightarrow\left(\psi_{n} \in \mathbb{N}\right)\left(\Psi_{n}(z)=\int_{c} \frac{\phi(t) d t}{(t-z)^{n}}\right.$ is holomorphic in $\left.\Omega \nLeftarrow \frac{d}{d z} \psi_{n}(z)=n \psi_{n+1}(z)\right)$.
$\Longrightarrow \Psi$, has complexderivatives of all orders in $\Omega$
When $C$ is a closed contour we denote the integral around it by $\oint_{c}$.

$$
\oint_{c} f(z) d z=-\oint_{c} f(z) d z
$$

Changing Contours. such that for all $z \in \Omega$ the straight line joining $l$ to $z$ lees inside $\Omega$. $l$ is called the loskact point.

T: Cauchys The: For any closed costar $C$ in stat domain $\Omega$ where $f$ is holomorphic

$$
\oint_{c} f(z) d z=0 .
$$

$T: \Omega$ stardomain, f holomorphic in $\Omega$, then for any two $C_{1}, C_{2} C \Omega$ with the same start and end points
Tiff holomorphic in stav domain $\Omega$ except at possibly $Z_{0}$.
For am centaur $C \subset \Omega$ with $z_{0}$ in its interior we have $\oint_{C} f(z) d z=\oint_{\partial D} f(0, p) d z \quad$ 价 such that $D\left(z_{0}, p\right)$ is
in the interior of $C$.
T: Cauchys Integral Fumula: $f$ holomorphic in domain $\Omega \subset \mathbb{C}$ and $C \subset \Omega$ simply dosed centaur $\Rightarrow \forall z$ in the interior of $C \quad f^{(n)}(z)=\frac{n!}{2 \pi i} \oint_{c} \frac{f(t) d t}{(t-z)^{n}}$
(7) Moduli \& Extrema:

For $S \subset \mathbb{C}$ open, a local $\max / \mathrm{min}$ of $\varphi: S \rightarrow \mathbb{R}$ is a point $c \in S$ with $\varphi(z) \leqslant \varphi(c)$ ( $\geqslant$ for min) for any $z$ in a neighborhood of $c$.
A saddle point $c \in \mathbb{C}$ of a twice $\mathbb{R}^{2}$ diff $\varphi: S \rightarrow \mathbb{R}$ is a point $c$ such that for $z=x+i y$

$$
\frac{\partial \varphi}{\partial x}(c)=\frac{\partial \varphi}{\partial y}(c)=0 \quad \text { 末 }\left[\frac{\partial^{2} \varphi \partial^{2} \varphi}{\partial x^{2} \partial y^{2}}-\left(\frac{\partial^{2} \varphi}{\partial_{x} \partial y}\right)^{2}\right]_{z=c}<0 \text {. }
$$

Ti holomorphic on $\Omega$ a derain $|f|$ attains a local max at some $\Rightarrow f=c$ on $\Omega$. point in $\Omega$
The maximum modulus of a holomorphic function is altailud on the boundary of the derain.
T: The max \& min of the real \& imaginary pants of holomorphic $f$ on $\Omega$ ave approached on $\partial \Omega$
I: Each critical point $\left(f^{\prime}(c)=0\right)$ an $\Omega$ of holmarphic $f$ is a saddle point.
T. Cauchy's Inequality' $f$ holomorphic on an open set containing $\partial D\left(z_{0}, R\right) \cup D\left(z_{0}, R\right) \notin|f(z)| \leq M \quad \forall z \in \partial D\left(z_{0}, R\right)$ $\Rightarrow\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M}{R^{n}}$
$T$ : Lionville: All bounded entive functions are constant.
$T: P(z)$ noncanstant polynomial $\Rightarrow \exists z_{0} \in \mathbb{C} \quad P\left(z_{0}\right)=0$.
$T:(f$ entire $)(\exists A, B, \lambda>0)(\forall z \in \mathbb{C})\left(|f(z)|<A+B|z|^{\lambda}\right)$
$\Rightarrow f$ is polynomial degree $\leq \lambda$.
$T:(f$ entire $)(\exists R, K>0)(|z| \geqslant R \Rightarrow|f| z) \mid \geqslant K) \Rightarrow f$ polynomial
(8) Analytic Continuation I:

Taylers Theorem.
$f$ holomorphic $\Longrightarrow \forall z \in D(z, R) \subset \Omega$ The laxest open disc centered in $\Omega$ a domain $f(z)=\sum_{j \geqslant 0} \frac{f^{(j)}\left(z_{0}\right)}{j!}\left(z-z_{0}\right)^{j}$

- This sucres is the taylor series. $R$ is the radius of convergence.

A function that is representable by a taylor series in a nighlourheded of a point is called analytic, of that pant. Anditic $\equiv$ Holmapphic on $\mathbb{C}$.

- The radius of convergence $R$ is the distance from the pout of expansion to the nearest non-holemarpthice point;
T: $\frac{1}{R}=\lim _{j \rightarrow \infty} \sup _{l>j}\left|\frac{f^{(\mu)}\left(z_{0}\right)}{l!}\right|^{\frac{1}{R}}$
Continuations.
$T$ : $f$ \& g holomorphic on domain $\Omega, S C \Omega$ a closed set such that $\exists c \in \Omega, c$ a point of accumulation for $S$. $(\forall z \in S)(f(z)=g(z)) \Rightarrow(\forall z \in \Omega)(f(z)=g(z))$.

For $f$ holomorphic in domain $\Omega \& y$ dined on $S C \Omega$ with an accumulation point in $\Omega$, then if $(f(z)=g(z))(\forall z \in S)$ we call $f$ the andylic continuation of $g$ to the domain $\Omega$.
(9) Zeros $\$$ Singularities:
$f$ holomorphic in domain $\Omega$
Z. a zero of $f \Longleftrightarrow f\left(z_{.}\right)=0$
$z_{0}$ an isolated zero of $f \Longleftrightarrow f\left(z_{0}\right)=0$ AND $(\exists \varepsilon>0)\left(y_{z} \in D\left(z_{0}, \varepsilon\right)\left\{\left\{z_{0}\right)\right\}(f(z) \neq 0)\right.$
z. a zero $\Longleftrightarrow f\left(z_{0}\right)=0 \quad \lim _{\text {and }} \frac{f(z)}{\left(z \rightarrow z_{0}\right.} \frac{\left.z_{0}\right)^{m}}{(z \neq 0 .}$ \& $\operatorname{arder} m \in \mathbb{N}$ and $z \rightarrow z_{0}\left(z-z_{0}\right)^{m}$ terists
$T$ if holomorphic in domain $\Omega$
$\Rightarrow$ (1). Every zero is isolated in $\Omega$
Every zero has a well defined order $\in \mathbb{N}$
There are only finitely many zerves in any compact subset of $\Omega$
OR (2) $(\forall z \in \Omega)(f(z)=0)$.

Singularities.
If $f$ is helemarphic in $D(c, \varepsilon) \backslash\{c\}$ but not at $c$, them $c$ is an isolated singularity of $f$. If there exits a constant $k$ at $c$ for which $g(z)=\left\{\begin{array}{l}f(z), z \neq c \\ k, z=c\end{array}\right.$ is holmarphic at $c$ then $c$ is a removable singularity of $f$.
$T$ : L'Hopitals' For $f \& g$ with series at $z=c$ of oder $m$ then, $\lim _{z \rightarrow c} \frac{f(z)}{g(z)}=\lim _{z \rightarrow c} \frac{f^{(m)}(z)}{g^{(m)}(z)}$

$$
\sum_{n=-\infty}^{-1} c_{n}=\sum_{n=1}^{\infty} c_{-n} \quad \& \quad \sum_{n=-\infty}^{\infty} c_{n}=\sum_{n=-\infty}^{-1} c_{n}+\sum_{n=1}^{\infty} c_{n}
$$

T: Laurent, Theorem: if $f$ has an isolated singularity at $z_{0}$ and is holomorphic e inside $D\left(z_{0}, R\right) \backslash\left\{z_{0}\right\}$ THEN $f$ is representable as $\left.\left.f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \quad a_{n}=\frac{1}{2 \pi i} \oint_{0} \frac{f(t) d t}{1\left(t-z_{0}\right)=p}\right)_{0}\right)^{n+1}$, some $p \in(0, R)$.
This series is the laurent server of $f$.
The series $\sum_{n=-\infty}^{-1} a_{n}\left(z-z_{0}\right)^{n}$ is the principle part of the secures. If $\exists m \in \mathbb{N}$ such that the laurent series is $\sum_{n=-m}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ then $z_{0}$ is a pole of adder $m$. If three is no such $m$ then $z_{0}$ is an isolated essential singularity.

$$
\operatorname{Res}_{z=z_{0}}\{f(z)\}=a_{-1}=\left.\frac{1}{2 \pi i} \oint_{c} \frac{f(t) d t}{\left(t-z_{0}\right)^{n+1}}\right|_{n=-1}=\frac{1}{2 \pi i} \oint_{c} f(t) d t
$$

A pole of adder $m \in \mathbb{N}, z_{0}$, of $f$ is an stated singularity such that $f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{m}}$, for some $g\left(z_{0}\right) \neq 0$ holomorphic of $z_{0}$. $m=1 \Rightarrow$ a simple pole. $m=2 \Rightarrow$ dabble pole.

T: For an $m^{\text {th }}$ order pole of $f$ at $c$.

$$
\operatorname{Res}_{z=c}\{f(z)\}=\frac{1}{(m-1)!} \lim _{z \rightarrow c} \frac{d^{m-1} 1}{d z^{m-1}}\left[(z-c)^{m} f(z)\right]
$$

T: Casorat-Weierstrass: In every neighbourhood of an isolated escatial singularity of $f, f$ tabes values arvititarly close to any given value infinitely often.
T: Picard's: In every neighbourhood of an isolated escatial singularity $f$ attains every given value with at most me exception, infinitely often. $T$ if holomorphic in $\Omega$ a denali then $f$ hes isolated zero order $m \in \mathbb{N} \Longleftrightarrow \frac{1}{f}$ has a poler of order at $z_{0} \in \Omega$ $m$ at $z \in \Omega$
(10) Asymptotic Behaviour:

A nightheurhood of $\infty$ is some set $\{z \in \mathbb{C}||z|>R\}$ same $R>0$.

$$
\begin{aligned}
& f \sim g \text { as } z \rightarrow c \Longleftrightarrow \lim _{z \rightarrow c} \frac{f(z)}{g(z)}=1 \\
& f(z)=0(g(z)) \text { as } z \rightarrow c \Longleftrightarrow(\exists \varepsilon>)((\exists k>0)(y z \in(k, c))(|f(z)|<|k| g(z) \mid)
\end{aligned}
$$

$$
f(z)=0(g(z)) \text { us } z \rightarrow c \Longleftrightarrow \lim _{z \rightarrow c} \frac{f(z)}{g(z)}=0 \text {. }
$$

$$
\begin{aligned}
& \text { Landau Rules. } \\
& \begin{array}{l}
\text { Landau Rules. } \\
m, n \in \mathbb{K}, z \longrightarrow \infty:\left(1+O\left(z^{m}\right)\right)\left(1+0\left(z^{n}\right)\right)=\left\{\begin{array}{l}
\left.1+O\left(z^{m a x} z_{m, n}^{m}\right)\right)_{o R}^{m \leq 0} n \leq 0 \\
1+O\left(z^{m+n}\right), m, n>0
\end{array}\right.
\end{array} \\
& {\left[1+0\left(z^{m}\right)\right]^{-1}=1+O\left(z^{m}\right), m \leq 0} \\
& \left.m, n \in \mathbb{Z}, z \longrightarrow 0:\left(1+O\left(z^{m}\right)\right)\left(1+O z^{n}\right)\right)=\left\{\begin{array}{l}
1+O\left(z^{(z i n}(m, n)\right), \quad m_{2}=000 \\
1+O\left(z^{m+n}\right), \quad \text {, } n<0 .
\end{array}\right. \\
& {\left[1+O\left(z^{m}\right)\right]^{-1}=1+O\left(z^{m}\right), m \geqslant 0 .}
\end{aligned}
$$

(II) More General Contours:
T. Cauchy's Theorem: $C=\partial \Omega$ a simple does contour with interior domain $\Omega$ and $f$ holomorphic in $\Omega, f$ contimueas on $\Omega \cup C$

$$
\Longrightarrow \oint_{c} f(z) d z=0
$$

${ }^{\text {The feral }}$ Theorem $\Rightarrow f^{(n)}(z)=\frac{n!}{2 \pi i} \oint_{c} \frac{f(t) d t}{(t-z)^{n+1}}$, where $f^{(0)}=f, f^{(1)}=f^{\prime}$ etc.
$T:$ Deformation: $C_{1} \$ C_{2}$ contours in domain $\Omega$, where $f$ is holonoupplic
$C_{1} \& C_{2}$ start \& and at the same point
$C_{1}$ can be continuously deformed to $C_{2}$ witheat cursing non-hobomorphic points
of $f \Rightarrow \int_{c_{1}} f(z) d z=\int_{c_{2}} f(z) d z$

A bounded domain $\Omega$ is simply connected if comp $(\Omega)$ is connected.
(0) T: Latent's in an Annulus: f holm monerphic in $0 \leq R_{1}<\left|z-z_{0}\right|<R_{2}$ $\Rightarrow f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, a_{n}=\frac{1}{2 \pi_{i}} \oint_{(1-t-0 . j=}^{\left(t-z_{0}\right)^{n+1}}$, some $R_{1}<\rho<R_{2}$.
$T: R_{1}=\lim _{j \rightarrow \infty} \sup _{l>j}\left(a_{-\ell}\right)^{\frac{1}{2}} \quad T: \frac{1}{R_{2}}=\lim _{j \rightarrow \infty} \sup _{l>j}\left(a_{\ell}\right)^{\frac{1}{x}}$
T:C a simple dosed catour, interior domain $\Omega$, f helcmarphic in $\Omega$ except at finitely many isolated singularities $\left\{z_{k}\right\}_{k \in[n]}, f$ is contimeus on $\Omega \cup C$ except at $\left\{z_{b}\right\}$.

$$
\Rightarrow \oint_{c} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Rus}_{z=z_{k}}\{f(z)\}
$$

(12) Meromorphic Functions:

A function is meromorphic in a domain $\Omega$ if its only singularities in $\Omega$ are pus. If $f \neq g$ are meromorphic in $\Omega$ then $\frac{1}{f}, f g, f+g, f \circ g$ are. T: $f$ meromorphic on domain $\Omega \Rightarrow \frac{f^{\prime}(z)}{f(z)}$ is meromor chic on $\Omega$ with $\frac{f^{\prime}}{f}$ is the logarithmic delineative of $f$.

For $f$ holmonghic \& honers on cantor ${ }^{2} C$ and meromorphic on the interior of $C$ then we define $Z(f ; C)=\sum_{i=m i n i c i c}[$ ado $f$ were $]$

T: f halomemphic \& nonzero on simple closed contour $C$ \& meromorphic $Z_{1}$ in its interior domain $\Longrightarrow \frac{1}{2 \pi i} \oint_{c} \frac{f^{\prime}(z) d z}{f(z)}=Z(f ; C)-P(f ; C)$
 domain. $0 \leq|g(z)|<|f(z)|$ an $C$.

$$
\Longrightarrow Z(f+g i C)-P(f+g i c)=Z(f i C)-P(f ; C)
$$

(13) Sequences of Functions:

Po.ntuse limit: $F(z)=\lim _{n \rightarrow \infty} F_{n}(z) \Longleftrightarrow(\forall z)\left(\lim _{n \rightarrow \infty} F_{n}(z)=F(z)\right)$
For $\left\{F_{n} \xi_{\text {neiN }}\right.$ defined on $S, \Longleftrightarrow(\forall \varepsilon>0)(\exists N>0$ independent of $z) \quad$ Logarithm.
$F_{n} \rightarrow F$ urifonly on $S \quad \backsim\left(H_{n}>N\right)(\forall z \in S)\left(\left|F_{n}(z)-F(z)\right|<\varepsilon\right)$ For $z \in \mathbb{C} \backslash\{0\}$ the principal value of complex log is $\left\{F_{n}\right\}$ is uniformly Cancliy $\Leftrightarrow(\forall \varepsilon>0)(\nexists N>0, z$ independent $)(\forall m, n>N)(\forall z \in S)\left(\left|F_{n}(z)-F_{n}(z)\right| \varepsilon\right) \quad \log (z)=\log |z|+i \operatorname{avg}(z), \arg (z) \in(-\pi, \pi]$.
$T:\left\{F_{n}(z)\right\}_{n \in \mathbb{N}}$ converge uniformly on $S \Leftrightarrow\left\{F_{n}(z)\right\}_{n \in \mathbb{N}}$ is a uniform Cauchy sequence.
$T: L(z)$ holomorphic in domain $\Omega$, not containing 0 . Further $(\forall z \in \Omega)\left(L^{L}(z)=z^{-1}\right)$ AND $\left(\exists z_{0} t \Omega\right)\left(e^{\left(\left(z_{0}\right)\right.}=z_{0}\right)$ $\Rightarrow(\forall z \in \Omega)(\exp [L(z)]=z)$
A function satisfying the conditions above is a valid logarithm
in the neighbourhood of $z_{0}$.

$L_{1}$ \$ $L_{2}$ valid logarithms in $D\left(z_{0}, R\right) \subset \widetilde{\Omega}_{1} \cap \Omega_{2}$ $\Rightarrow$ For every connected open subset of $\Omega_{1} \cap \Omega_{2}$

$$
\exists m \in \sqrt[Z]{2} \text { such that } L_{1}(z)=L_{2}(z)+2 \pi i m
$$

A singularity $t_{0}$ of $f$ such that $f$ is discontinuous as you traverse the circle around
it is a branch point. A cut in the
plane drawn to avoid the point is a branch out

## Powers.

For $z, c \in \mathbb{C}$ define $z^{c}=e^{\log (z)}$, for any valid $\log$.
The principal value of $z^{c}$ is given by using the principle log. $z^{c}=|z|^{c} e^{i \operatorname{carg}(z)} \quad, \arg (z) \in(-\pi, \pi]$
$T$ :For principle value of $z^{c}$ $|z|^{\operatorname{Re}(c)} e^{-\pi \operatorname{lm}(c) \mid} \leq\left|z^{c}\right| \leq|z|^{\operatorname{Re}(c)} e^{\pi|\ln (c)|}$
$T: \frac{d}{d z} z^{c}=c z^{c-1}$
T: $Z^{c}$ has a branch cut an $\mathbb{R} \leq 0$

## (15) Analytic Continuation II:

$T:$ Fabrys: $\left\{\lambda_{m}\right\}$ strictly increasing sequence, $\lambda_{m} \in \mathbb{N}_{0}, \frac{\lambda_{m}}{m} \xrightarrow{m-\infty} \infty$ and $F(z)=\sum_{m \geqslant 0} a_{m} z^{\lambda_{m}}$ has radius of convergence 1 .
$\Rightarrow F(z)$ cannot be analytically continued beyond $|z|=1$

## Riemann Zeta.

Any series of form $\sum_{n \geqslant 1} \frac{a_{n}}{n^{s}}, s \in \mathbb{C}$, $a_{n} s$ independent is
a Dirichlet series.
$T: A(s)=\sum_{n \geqslant 1} \frac{a_{n}}{n^{s}}$ converges $\Rightarrow$ - Converges infancy $\forall \delta \in\left(0, \frac{\pi}{2}\right)$ for $s=s$ 。

$$
\left|\arg \left(s-s_{0}\right)\right| \leq \frac{\pi}{2}-\delta
$$

$A(s)$ is well defined in $\operatorname{Re}(s)>\operatorname{Re}\left(s_{0}\right)$ \& is
holomorphic there. $A^{\prime}(s)=\sum_{n=1} \frac{a_{n} \log (n)}{n^{3}}$

The Riemann zeta Function is defined ac $J(s)=\sum_{n \geqslant 1} \frac{1}{n^{s}}=\sum_{n \geqslant 1} \exp [-s \log (n)]$
for $s \in \mathbb{C}$ where this converges. We need anther definition for The continuation.
Denote $\mathbb{P} \subset \mathbb{N}$ the at of all primes, $f(s)=\prod_{p \in \mathbb{P}} \frac{1}{1-p^{-s}}$
T. $I$ is holomorphic everywhere except $s=1$, the residue at $s=1$ is 1

## Gamma Function.

$T:(n \in \mathbb{N})(a \in(0, n))\left(G_{n}(z, a)=\int_{a}^{n} e^{-t} t^{z-1} d t\right.$ is entire)
The incomplete Gamma is $T(z, a)=\int_{a}^{\infty} e^{-t} t^{z-1} d t, a>0$
$T: ~ \Gamma(z, a)$ is entire for $a>0$
The gamma function is defined as
$T(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t=\int_{0}^{1} e^{-t} t^{z-1} d t+\Gamma(z, 1)$
For $z \in \mathbb{C}$ where the integral exists. By analytic continuection

## else clone.

T: $Q(z)=O\left(z^{-2}\right)$ rational with poles $\left\{z_{k} \xi_{k \in[L]} \subset \mathbb{C} \mid\{0\}\right.$ $\Rightarrow \int_{0}^{\infty} Q(x) d x=\sum_{k=1}^{2} \operatorname{Res}_{k=z_{k}}\{Q(-z) \log (z)\}$
$\Rightarrow \int_{0}^{\infty} Q(x) \log (x) d x=\frac{1}{2} \sum_{k=1}^{L} \operatorname{Res}_{z=z_{k}}\left\{Q(-z) \log ^{2}(z)\right\}$

$$
\begin{aligned}
& \text { (T) } Q(z)=O\left(z^{-2}\right) \text { rational }\left\{z_{k}\right\}_{k \in[L]} \subset \mathbb{C} \backslash[a, b] \\
& \Rightarrow \int_{a}^{b} Q(x) d x=\sum_{k=1}^{c} \operatorname{Res}_{z=z_{k}}\left\{Q(z) \log \left(\frac{z-b}{z-a}\right)\right\}
\end{aligned}
$$

T: $Q(z)=\underset{O}{\mathcal{O}\left(z^{-3}\right)}$ rational $\left\{z_{k}\right\}_{k \in[L]} \subset \mathbb{C} \backslash[a, b]$ $\Rightarrow \int_{a}^{b} Q(x) \sqrt{(b-x)(x-a)} d x=-\pi \sum_{k=1}^{L} \operatorname{Res}_{z=z_{k}}\{Q(z) \sqrt{(z-b)(z-a)}\}$
T. $T(z)$ is meromopphic in $\mathbb{C}$. $T^{\tau}$ hus andy simple poles at $z=0,-1,-2, \ldots$ with $\operatorname{Res}_{z=-n}\{\Gamma(z)\}=\frac{(-1)^{n}}{n!}$
$T:|T(z)| \leqslant T(\operatorname{Re} \xi z \xi) \quad, \quad \operatorname{Re}(z)>0$
$T: \Gamma(z+1)=z \Gamma(z), z \in \mathbb{C}$
$T n \in \mathbb{N}_{0} \Rightarrow T(n+1)=n!\quad T: T\left(\frac{1}{2}\right)=\sqrt{\pi}$
$T \cdot T(z) T(1-z)=\frac{\pi}{\sin (\pi z)}, z \in \mathbb{C} \backslash \pi$
$T: T(z) \neq 0 \quad \forall z \in \mathbb{C} \backslash\left(-N_{0}\right) \quad T: \frac{1}{\Gamma(z)}$ is entire
T) $T(2 z)=\frac{2^{2 z-1}}{\sqrt{\pi}} T(z) T\left(z+\frac{1}{2}\right)$

The Beta function is $B(u, v)=\int_{0}^{1} t^{u-1}(1-t)^{v-1} d t, \operatorname{Re}(u), \operatorname{Re}(v)>0$
$T: B(u, v)=B(v, u) \quad T \cdot B(u, v)=\int_{0}^{\infty} \frac{x^{u-1} d x}{(1+x)^{u+v}}, R(u), R(v)>0$
$T: B(u, v)=\frac{\Gamma(u) T(v)}{\Gamma(u+v)} \quad$ most general $\beta$ iffirition too.

Relating $\rho \& T$
$R>0$ we affine the loop contact integral as $\int_{-R}^{(0+)} f(z) d z$ as a contour integral aver a simply closed contour encircling the origin cathy the negative real ax's at $-R$ only.
The Hankel loop center integral is $\int_{-\infty}^{(0+1} f(z) d z$

T: For $Q$ holomorphic on $\mathbb{R}^{+}$, if $Q$ is singular at $O$ it is a pole, Jp such that there are no other sigularitles of Q within $\rho_{(0+)}$ of the positive real axis
$\Rightarrow \frac{1}{2 \pi i} \int_{-\infty}^{(0+1)} z^{s-1} Q(-z) d z=\frac{\sin (\pi s)}{\pi} \int_{0}^{\infty} t^{s-1} Q(t) d t$
$T: J(s)=\frac{1}{T(s)} \int_{0}^{\infty} \frac{t^{s-1}}{e^{t}-1} d t, \operatorname{Re}(s)>1$.
$T: \rho(\varsigma)=\frac{\Pi(1-s)}{2 \pi i} \int_{-\infty}^{(0+1)} \frac{z^{s-1}}{e^{-z}-1} d z, \quad \varsigma \notin \mathbb{N}$

T: Reimann Relation: $s \neq 1, f(s)=2^{s} \pi^{s-1} \sin \left(\frac{1}{2} \pi s\right) T^{T}(1-s) \rho(1-s)$
(16) Harmmic Analysis:

Fourier.
The $n^{\text {th }}$ farrier coefficient for $\tilde{\sim}=\frac{1}{L} \int_{0}^{L} f(t) e^{2 \pi i \frac{n t}{L}} d t$
$f$ absolutely integrable \& cuts,

$$
L>0 \quad \text { is }
$$

T: $L>0$, $f$ continuous a absolutely integrable on $(0, L)$ with $\sum_{n=-\infty}^{\infty}\left|\tilde{f}_{n}\right|<\infty \Rightarrow(\forall t \in(0, L))\left(f(t)=\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} \tilde{f}_{n} e^{2 \pi i \frac{h t}{L}}\right)$.
$T: \tilde{f}_{n}+\tilde{f}_{-n}=\frac{2}{L} \int_{0}^{L} f(t) \cos \left[2 \pi \frac{n t}{L}\right] d t$ and.
$-i\left(\tilde{f}_{n}-\tilde{f}_{-n}\right)=\frac{2}{L} \int_{0}^{2} f(t) \sin \left[2 \pi \frac{n t}{L}\right] d t$.
T: f rational with paler $\left\{z_{k} \xi_{k \in[L]} \not \subset Z \not \approx f_{(z)=O\left(z^{-2}\right)}^{n \rightarrow \infty}\right.$ Harmonic Functions.
$\Longrightarrow \sum_{l=-\infty}^{\infty} f(l)=-\pi \sum_{j=1}^{L} \operatorname{Res}_{z=z_{j}}\left\{f(z) \frac{1}{\tan (\pi z)}\right\}$
T: $f$ rational poles at $\left\{z_{k}\right\}_{\text {Le }[L]} \& \mathbb{L}, f(z)=O\left(z^{-1}\right)$

$$
\Rightarrow \sum_{l=-\infty}^{\infty}(-1)^{l} f(l)=-\pi \sum_{j=1}^{L} \operatorname{Res}_{z=z_{j}}\left\{\frac{f(z)}{\sin (\pi z)}\right\}
$$

For a function $f$ Riemann integrable on corny finite

$$
\begin{aligned}
& {[a, b] \subset(A, B) \subset \mathbb{R}, A, B \in \mathbb{R} \cup\{ \pm \infty\}, c \in(A, B)} \\
& \Rightarrow \int_{A}^{B} f(t) d t=\lim _{a \rightarrow A} \int_{a}^{c} f(t) d t+\lim _{b} \rightarrow B \int_{c}^{b} f(t) d t
\end{aligned}
$$

is the improper Riemann integral.
The Fourier transform of $f: \mathbb{R} \rightarrow \mathbb{C}$ is $\tilde{f}(k)=\int_{-\infty}^{\infty} f(x) e^{i k x} d x, k \in \mathbb{C}$ umplex frequency The inverse Faurien Tranfferm is $f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \tilde{f}(k) e^{-i k x} d k$. $f$ must be continuous \& Riemann integrable dovicusly.

T: $a<b \in \mathbb{R}, f$ holomorphic inside $S=\{z \mid \operatorname{Im}(z) \in(a, b)\}$, continuous?

$$
\begin{aligned}
& \text { on } \bar{S}=s \text { vas, } \lim _{|x| \rightarrow \infty} \max _{y \in\left[c_{1} b\right]}|f(x+i y)|=0 \\
& \Rightarrow\left(\forall z_{1}, z_{2} \in \bar{S}\right)\left(\int_{-\infty}^{\infty} f\left(x+z_{1}\right) d x=\int_{-\infty}^{\infty} f\left(x+z_{2}\right) d x\right)
\end{aligned}
$$

$T: \varphi<\vartheta \in(-\pi, \pi]$, f holomorphic in $\left.S=\left.\xi r e^{i x} \in \mathbb{C}\right|^{\prime} r \geqslant 0, x \in(\varphi, \vartheta)\right\}$. ] ont's on $\bar{S}=S U \partial S, ~ \& \lim _{r \rightarrow \infty} \max _{x \in[\varphi, \vartheta]}\left|r f\left(r^{i x}\right)\right|=0$

$$
\Longrightarrow\left(\forall x_{1}, x_{2} \in[\varphi, \vartheta]\right)\left(\int_{0}^{\infty} f\left(r e^{i x_{1}}\right) d r=\int_{0}^{\infty} f\left(r e^{i x_{2}}\right) d r\right)
$$

T: $Q(2)=\frac{\text { polynomial degree } m}{\text { polynomial degree } n}, m \leq n-1$

$\left\{z_{k}^{( \pm)}\right\}_{k=1, \ldots, L_{ \pm}}$poles on the upper / lower half plane respectively $\Rightarrow \int_{-\infty}^{\infty} e^{i t x} Q(x) d x=\left\{\begin{array}{l}2 \pi i \\ \sum_{k=1}^{k_{+}} \operatorname{Res}_{z=z_{k}^{+}}\left\{e^{i t z} Q(z)\right\}, t \geq 0 . \\ -2 \pi i \sum_{k=1}^{\sum_{i-1}} \operatorname{Res}_{z=z_{k}}^{-z_{k}}\left\{e^{i t z} Q(z)\right\}, t \leq 0\end{array}\right.$

The Cauchy principal value integral of $f$, for $a, b, c \in \mathbb{R}$.

- $f_{-\infty}^{\infty} f(x) d x=\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x$
- $f_{a}^{b} f(x) d x=\lim _{\varepsilon \rightarrow 0^{+}}^{R \rightarrow \infty}\left(\int_{a}^{c-\varepsilon} f(x) d x+\int_{c+\varepsilon}^{b} f(x) d x\right)$

Importantly the limits are taken similtuneously.
T: Jordaens lemma: $S=\left\{R_{e}^{i t} \mid t \in[0, \pi]\right\}, R>0, k>0$ $f$ contrimesion $S \Longrightarrow\left|\int_{S} e^{i k z} f(z) d x\right| \leq \frac{\pi}{k}\left(1-e^{-k R}\right) \max _{z \in S}|f(z)|$.

T: Kronig-Kvamer: $f$ holomorphic in closed upper half plane $\lim _{\substack{z \rightarrow \infty \\ \operatorname{Im}(z)>0}} f(z)=0, f=u+i v, u \& v$ neal functers $\Longrightarrow(\forall y \in \mathbb{R})\left(a(y)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{v(x) d x}{x-y} \& v(y)=-\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{u(x) d x}{x-y}\right)$ A velation similar to the Cauchy-Riemann relations.

T: Sokhotski-Plemelj; continues absolutely integrable on $(-\infty, \infty)$

$$
\Rightarrow(\forall y \in \mathbb{R})\left(\lim _{\varepsilon \rightarrow 0^{+}} \int_{-\infty}^{\infty} \frac{f(x) d x}{x-y \pm i \varepsilon}=f_{-\infty}^{\infty} \frac{f(x) d x}{x-y} \mp \pi i f(y)\right)
$$

T: For a holomappric $f(z)=\phi(x, y)+i \psi(x, y), \phi \& \psi$ real vaud $\Rightarrow \phi \& \psi$ have pure \& mixed partial derivatives with respect to $z \& y$ of all orders. Moreover the order of derivatives can be interchanged.

A real valued solution $g(x, y)$ to the laplace equation $\Delta g(x, y)=\frac{\partial^{2} g}{\partial x^{2}}(x, y)+\frac{\partial^{2} g}{\partial y^{2}}(x, y)=0$ is a harmonic func.

T: The real \& imaginary parts $\phi, \psi$ of a helamorphic $f=\psi+i \psi$ both satisfy the laplace equations.
ie. $\quad \frac{\partial^{2}}{\partial x^{2}} \phi+\frac{\partial^{2}}{\partial y^{2}} \phi=0 \quad \& \quad \frac{\partial^{2}}{\partial x^{2}} \psi+\frac{\partial^{2}}{\partial y^{2}} \psi=0$.

Solutions of the Laplace equations that are connected by the Cauchy-Zaimanin relations are called conjugate harmonic functions.
$T: \phi$ a harmonic functor on $\Rightarrow$ holomorphic on $\Omega T$ : Consider a bijective conformal map p from domain $\Omega$ a simply connected domain $\Omega \Rightarrow \phi(x, y)=\operatorname{Re}[f(x, y)]$. to $w$-plane. ie. $w=p(z) \Longleftrightarrow \#=p^{-1}(\omega)$.

Note that $f$ will not be unique.
Any holomorphic functim consists of a set of conjugate harmonic functions, this tells us that on a simply connected domain this relation is invertable.

Denote $\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=\Delta \phi$
$T:(\forall \mu, v \in \mathbb{C})(\mathbb{A}(\mu \phi+v \psi)=\mu \Delta \phi+v \Delta \psi)$
Laplace equates are linear-
So liner ambinctions of solutions are solutions.

We usually solve laplace equators an a domain with some bunderry carditions. $C$ a differentiable contour \& $g_{0}: C \rightarrow \mathbb{R}$ a differentiable function along $C$. Then a Dirichlet boundary andituen for a $D E$ in $\phi$ is $\phi(x, y)=g_{0}(x, y) \quad \forall(x, y) \in C$.
A Neumann bandary canditlen for a $D E$ in $\phi$ is $\tilde{h}(x, y) \cdot \nabla \phi(x, y)=g_{0}(x, y) \quad \forall(x, y) \in C$ where $\hat{h}$ is the unit hamal vector of $C$ at $(x, y)$, is the inner product \& $\nabla \phi=\frac{\partial \phi}{\partial x} \hat{i}+\frac{\partial \phi}{\partial y} \hat{j} \cdot \begin{aligned} & \hat{i}=(1,0) \\ & \hat{j}=(0,1)\end{aligned}$
$T: \Omega$ a domain, $C=\partial \Omega$ differentiable contain; $g_{0}: C \rightarrow \mathbb{R}$ degereatiable function on $C . f=\phi+i \psi$ with both $D \& \psi$ holomorphic on $\Omega \cdot \hat{n}$ unit normal,$\hat{t}$ unit tangent of $C$ at $(x, y)$; with $\operatorname{det}(\hat{n}, \hat{t})=1$ THEN $\left[\begin{array}{l}\forall(x, y) \in C \\ \phi(x, y)=g_{0}(x, y)\end{array} \Longleftrightarrow \begin{array}{l}(\forall(x, y) \in C)\left(-\hat{n} \cdot \nabla \psi(x, y)=\hat{t} \cdot \nabla g_{0}(x, y)\right) \\ \\ \\ \forall\left(\exists\left(x_{0, y}, y_{0}\right) \in C\right)\left(\phi\left(x_{0}, y_{0}\right)=g_{0}\left(x_{0}, y_{0}\right)\right) .\end{array}\right]$

For a holomorphic $f(z), z=x+i y, f=\phi+i \psi$ we call $\phi$ the potential, lines of constant $\phi$ are equipotentals. $\psi$ is the stream function, lines of constant $\psi$ are called streamlines. \& $f$ is called the complex potential.
T: Equipotential \& stream lines always intersect at 1 .

Conformal Maps.
A helamerphic function $f$ on domain $\Omega$, such that $(\forall z \in \Omega)\left(f^{\prime}(z) \neq 0\right)$ is a conformed map.

These are useful maps because under a conformal mop the straight inv joining $z$ to $z+\delta z$ is

- translated by $f(z)-z$ - dilated by $\left|f^{\prime}(z)\right|$
- rotated by $\arg \left(f^{\prime}(z)\right) \&$ angles between tangents to curves ore preserved. Also gives local invertubility off.

Also consider simply connected domain $Z$ in complex zplane.

$$
\Longrightarrow\left[\begin{array}{ll}
\phi: \Omega \rightarrow \mathbb{C} \text { is a solution to } & \Longleftrightarrow \circ p \text { is a solution } \\
\Delta \phi=0 \text { in } \Omega & \text { to } \Delta(\phi \circ p) \text { in } Z
\end{array}\right]
$$

Laplace equation.
T: $f$ entire $\Rightarrow f(\mathbb{C})$ is dense in $\mathbb{C}$.
$T$ No conformal maps exist from $\mathbb{C}$ to

- bounded domain. Exterier af bounded demain
- half plane.

Two sets, $\Omega$ a domain, $\psi$ a set such that there exists a biegtive conformal map $f: \Omega \longrightarrow \phi$ are called conformably equiraburt.
A bijective conformal map $f_{i} \Omega \longrightarrow \Omega$ is a conformal automorphism.

Ti Any two simply connected domains, such that neither ave the entire $\mathbb{C}$, are conformaly oquivilaut.
Conformal Automorphisms of $\overline{\mathbb{C}}$.
+: The only conformal automorphisms of $\mathbb{C}$ ave I rear maps: $f(z)=a z+b, a, b \in \mathbb{C}, a \neq 0$.
$\overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$. There are arithmetic mules...
$\forall z \in \mathbb{C} \quad z+\infty=\infty+z=\infty, \quad \frac{z}{\infty}=0$
$\forall z \in \overline{\mathbb{C}} \backslash\{0\} \quad z \infty=\infty z=\infty$
$0, \infty, \infty, O \infty, \infty \pm \infty$ are NOT nell defined.
T: Linear maps ave conferral ontomerphisms of $\overline{\mathbb{C}}$. $T \longmapsto \longmapsto \frac{1}{z}$ is a caffernal actomerpulsm of $\mathbb{C}$

T: Mobius trangurms are the only conformal maps of $\overline{\mathbb{C}}$ A mobius transform is a meromorphic function $\tau\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], z\right)=\frac{a z+b}{c z+d}, \quad a d-b c \neq 0$.

T: $f(z)=z^{-1}$ bijectively maps

- $\partial D\left(z_{0}, r\right) \longleftrightarrow \partial D\left(\frac{z_{0}^{*}}{\left|z_{0}\right|^{2}-r^{2}}, \frac{r}{\left|z_{0}\right|^{2}-r^{2} \mid}\right), \quad\left|z_{0}\right| \neq r>0$
- $\partial D\left(z_{0},\left|z_{0}\right|\right) \longleftrightarrow\left\{z \in \mathbb{C} \left\lvert\, \operatorname{Re}\left(z_{0} z\right)=\frac{1}{2}\right.\right\}, z_{0} \in \mathbb{C} \backslash\{0\}$
$\cdot\left\{z \in \mathbb{C} \mid \operatorname{Re}\left(e^{i \theta_{0}} z\right)=0\right\} \longleftrightarrow\left\{z \in \mathbb{C} \mid \operatorname{Re}\left(e^{-i \theta_{0}} z\right)=0\right\}, \theta_{0} \in \mathbb{R}$.
T: A mains transformation is a composition of rotations, dilation, translations \& inversions.
( $a_{1}, b_{1}, c_{1}, d_{1}, a_{2}, b_{2}, c_{2}, d_{2} \in \mathbb{C}, a d-b c \neq 0$
$J\left(\left[\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right], J\left(\left[\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right], z\right)\right)=J\left(\left[\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right]\left[\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right]_{1} z\right)$
T: Any momus transformation maps circles $\$$ straight lies auto circles \& straight lines.
-1. Set of all mobius transformations is a group with composition as the actin.
$S L(2, \mathbb{C})$ is the group of complex $2 \times 2$ matrices with determinant 1 .
$\mathbb{H}_{+}=\{z \in \mathbb{C} \mid \operatorname{lm}(z)>0\}$
T: Real porancuter wobins trangemes with $a d-b c>0$ are conformal automorphisms of of $H_{+} \cup\{\infty \xi$

A mobius transform such that $a, b, c, d \in \mathbb{Z}, a d-b c=1$ is a modular transformation. The group of tue transformations is called then modular group.
Fundermutal set?

Ti holomorphic ar simple closed century $C \subset \Omega$

$$
\Omega \text { a domain. }
$$

$$
\Longrightarrow \forall z_{0} \in \text { interior of } \hat{c}=\left\{\left.\frac{z_{0}-1}{z} \right\rvert\, z \in \mathbb{C}\right\}
$$

$$
\int_{c} f(z) d z=\stackrel{\frac{1}{\omega-z_{0}}}{=} \oint_{c} f\left(\frac{1}{\omega-z_{0}}\right) \frac{-d \omega}{\left(\omega-z_{0}\right)^{2}}
$$

$$
=\oint_{\hat{c}} f\left(\frac{1}{w-z_{0}}\right) \frac{d w}{\left(w-z_{0}\right)^{2}}
$$

$T Q(z)$ rational $\left\{z_{k}\right\}_{k e}[L], R>0$ large energh so
that all poles $l_{i}$ in pen disc $D(0, R)$
$\Rightarrow \sum_{k=1}^{n} \operatorname{Res}_{z=z k}\{Q(z)\}=\operatorname{Res}_{\omega=0}\left\{\frac{1}{w^{2}} Q\left(\frac{1}{w}\right)\right\}$
The residue at infinity is desired by
$\operatorname{Res}_{\omega=\infty}\{Q(\omega)\}=-\operatorname{Res}\left\{\frac{1}{\omega^{2}} Q\left(\frac{1}{\omega}\right)\right\}$
T: $\int_{a}^{b} Q(x) d x=\sum_{k=0}^{L} \operatorname{Res}_{z=z_{k}}\left\{Q(z) \log \left(\frac{z-b}{z-a}\right)\right\}$

$$
-\operatorname{Res}\left\{\frac{Q\left(w^{-1}\right)}{w^{2}} \log \left(\frac{1-b w}{1-a w}\right)\right\}
$$

T. $\int_{a}^{b} Q(x) \sqrt{(b-x)(x-a)} d x$

$$
\begin{aligned}
& \sum_{k=1}^{L} \operatorname{Res}_{z=k_{k}}\{Q(z) \sqrt{(z-b)(z-a)}\} \\
& -\operatorname{Res}_{\omega=0}\left\{\frac{Q\left(\omega^{-1}\right)}{\omega^{3}} \sqrt{(1-b \omega)(1-a \omega)}\right\}
\end{aligned}
$$

